Left Termination of the query pattern
p_in_1(a)
w.r.t. the given Prolog program could not be shown:
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
Clauses:
p(X) :- ','(l(X), q(X)).
q(.(A, [])).
r(1).
l([]).
l(.(H, T)) :- ','(r(H), l(T)).
Queries:
p(a).
We use the technique of [30]. With regard to the inferred argument filtering the predicates were used in the following modes:
p_in: (f)
l_in: (f)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
p_in_a(X) → U1_a(X, l_in_a(X))
l_in_a([]) → l_out_a([])
l_in_a(.(H, T)) → U3_a(H, T, r_in_a(H))
r_in_a(1) → r_out_a(1)
U3_a(H, T, r_out_a(H)) → U4_a(H, T, l_in_a(T))
U4_a(H, T, l_out_a(T)) → l_out_a(.(H, T))
U1_a(X, l_out_a(X)) → U2_a(X, q_in_g(X))
q_in_g(.(A, [])) → q_out_g(.(A, []))
U2_a(X, q_out_g(X)) → p_out_a(X)
The argument filtering Pi contains the following mapping:
p_in_a(x1) = p_in_a
U1_a(x1, x2) = U1_a(x2)
l_in_a(x1) = l_in_a
l_out_a(x1) = l_out_a(x1)
U3_a(x1, x2, x3) = U3_a(x3)
r_in_a(x1) = r_in_a
r_out_a(x1) = r_out_a(x1)
U4_a(x1, x2, x3) = U4_a(x1, x3)
U2_a(x1, x2) = U2_a(x1, x2)
q_in_g(x1) = q_in_g(x1)
.(x1, x2) = .(x1, x2)
[] = []
q_out_g(x1) = q_out_g
p_out_a(x1) = p_out_a(x1)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PrologToPiTRSProof
Pi-finite rewrite system:
The TRS R consists of the following rules:
p_in_a(X) → U1_a(X, l_in_a(X))
l_in_a([]) → l_out_a([])
l_in_a(.(H, T)) → U3_a(H, T, r_in_a(H))
r_in_a(1) → r_out_a(1)
U3_a(H, T, r_out_a(H)) → U4_a(H, T, l_in_a(T))
U4_a(H, T, l_out_a(T)) → l_out_a(.(H, T))
U1_a(X, l_out_a(X)) → U2_a(X, q_in_g(X))
q_in_g(.(A, [])) → q_out_g(.(A, []))
U2_a(X, q_out_g(X)) → p_out_a(X)
The argument filtering Pi contains the following mapping:
p_in_a(x1) = p_in_a
U1_a(x1, x2) = U1_a(x2)
l_in_a(x1) = l_in_a
l_out_a(x1) = l_out_a(x1)
U3_a(x1, x2, x3) = U3_a(x3)
r_in_a(x1) = r_in_a
r_out_a(x1) = r_out_a(x1)
U4_a(x1, x2, x3) = U4_a(x1, x3)
U2_a(x1, x2) = U2_a(x1, x2)
q_in_g(x1) = q_in_g(x1)
.(x1, x2) = .(x1, x2)
[] = []
q_out_g(x1) = q_out_g
p_out_a(x1) = p_out_a(x1)
Using Dependency Pairs [1,30] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
P_IN_A(X) → U1_A(X, l_in_a(X))
P_IN_A(X) → L_IN_A(X)
L_IN_A(.(H, T)) → U3_A(H, T, r_in_a(H))
L_IN_A(.(H, T)) → R_IN_A(H)
U3_A(H, T, r_out_a(H)) → U4_A(H, T, l_in_a(T))
U3_A(H, T, r_out_a(H)) → L_IN_A(T)
U1_A(X, l_out_a(X)) → U2_A(X, q_in_g(X))
U1_A(X, l_out_a(X)) → Q_IN_G(X)
The TRS R consists of the following rules:
p_in_a(X) → U1_a(X, l_in_a(X))
l_in_a([]) → l_out_a([])
l_in_a(.(H, T)) → U3_a(H, T, r_in_a(H))
r_in_a(1) → r_out_a(1)
U3_a(H, T, r_out_a(H)) → U4_a(H, T, l_in_a(T))
U4_a(H, T, l_out_a(T)) → l_out_a(.(H, T))
U1_a(X, l_out_a(X)) → U2_a(X, q_in_g(X))
q_in_g(.(A, [])) → q_out_g(.(A, []))
U2_a(X, q_out_g(X)) → p_out_a(X)
The argument filtering Pi contains the following mapping:
p_in_a(x1) = p_in_a
U1_a(x1, x2) = U1_a(x2)
l_in_a(x1) = l_in_a
l_out_a(x1) = l_out_a(x1)
U3_a(x1, x2, x3) = U3_a(x3)
r_in_a(x1) = r_in_a
r_out_a(x1) = r_out_a(x1)
U4_a(x1, x2, x3) = U4_a(x1, x3)
U2_a(x1, x2) = U2_a(x1, x2)
q_in_g(x1) = q_in_g(x1)
.(x1, x2) = .(x1, x2)
[] = []
q_out_g(x1) = q_out_g
p_out_a(x1) = p_out_a(x1)
R_IN_A(x1) = R_IN_A
U3_A(x1, x2, x3) = U3_A(x3)
U1_A(x1, x2) = U1_A(x2)
U4_A(x1, x2, x3) = U4_A(x1, x3)
U2_A(x1, x2) = U2_A(x1, x2)
L_IN_A(x1) = L_IN_A
P_IN_A(x1) = P_IN_A
Q_IN_G(x1) = Q_IN_G(x1)
We have to consider all (P,R,Pi)-chains
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PrologToPiTRSProof
Pi DP problem:
The TRS P consists of the following rules:
P_IN_A(X) → U1_A(X, l_in_a(X))
P_IN_A(X) → L_IN_A(X)
L_IN_A(.(H, T)) → U3_A(H, T, r_in_a(H))
L_IN_A(.(H, T)) → R_IN_A(H)
U3_A(H, T, r_out_a(H)) → U4_A(H, T, l_in_a(T))
U3_A(H, T, r_out_a(H)) → L_IN_A(T)
U1_A(X, l_out_a(X)) → U2_A(X, q_in_g(X))
U1_A(X, l_out_a(X)) → Q_IN_G(X)
The TRS R consists of the following rules:
p_in_a(X) → U1_a(X, l_in_a(X))
l_in_a([]) → l_out_a([])
l_in_a(.(H, T)) → U3_a(H, T, r_in_a(H))
r_in_a(1) → r_out_a(1)
U3_a(H, T, r_out_a(H)) → U4_a(H, T, l_in_a(T))
U4_a(H, T, l_out_a(T)) → l_out_a(.(H, T))
U1_a(X, l_out_a(X)) → U2_a(X, q_in_g(X))
q_in_g(.(A, [])) → q_out_g(.(A, []))
U2_a(X, q_out_g(X)) → p_out_a(X)
The argument filtering Pi contains the following mapping:
p_in_a(x1) = p_in_a
U1_a(x1, x2) = U1_a(x2)
l_in_a(x1) = l_in_a
l_out_a(x1) = l_out_a(x1)
U3_a(x1, x2, x3) = U3_a(x3)
r_in_a(x1) = r_in_a
r_out_a(x1) = r_out_a(x1)
U4_a(x1, x2, x3) = U4_a(x1, x3)
U2_a(x1, x2) = U2_a(x1, x2)
q_in_g(x1) = q_in_g(x1)
.(x1, x2) = .(x1, x2)
[] = []
q_out_g(x1) = q_out_g
p_out_a(x1) = p_out_a(x1)
R_IN_A(x1) = R_IN_A
U3_A(x1, x2, x3) = U3_A(x3)
U1_A(x1, x2) = U1_A(x2)
U4_A(x1, x2, x3) = U4_A(x1, x3)
U2_A(x1, x2) = U2_A(x1, x2)
L_IN_A(x1) = L_IN_A
P_IN_A(x1) = P_IN_A
Q_IN_G(x1) = Q_IN_G(x1)
We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph [30] contains 1 SCC with 6 less nodes.
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ UsableRulesProof
↳ PrologToPiTRSProof
Pi DP problem:
The TRS P consists of the following rules:
U3_A(H, T, r_out_a(H)) → L_IN_A(T)
L_IN_A(.(H, T)) → U3_A(H, T, r_in_a(H))
The TRS R consists of the following rules:
p_in_a(X) → U1_a(X, l_in_a(X))
l_in_a([]) → l_out_a([])
l_in_a(.(H, T)) → U3_a(H, T, r_in_a(H))
r_in_a(1) → r_out_a(1)
U3_a(H, T, r_out_a(H)) → U4_a(H, T, l_in_a(T))
U4_a(H, T, l_out_a(T)) → l_out_a(.(H, T))
U1_a(X, l_out_a(X)) → U2_a(X, q_in_g(X))
q_in_g(.(A, [])) → q_out_g(.(A, []))
U2_a(X, q_out_g(X)) → p_out_a(X)
The argument filtering Pi contains the following mapping:
p_in_a(x1) = p_in_a
U1_a(x1, x2) = U1_a(x2)
l_in_a(x1) = l_in_a
l_out_a(x1) = l_out_a(x1)
U3_a(x1, x2, x3) = U3_a(x3)
r_in_a(x1) = r_in_a
r_out_a(x1) = r_out_a(x1)
U4_a(x1, x2, x3) = U4_a(x1, x3)
U2_a(x1, x2) = U2_a(x1, x2)
q_in_g(x1) = q_in_g(x1)
.(x1, x2) = .(x1, x2)
[] = []
q_out_g(x1) = q_out_g
p_out_a(x1) = p_out_a(x1)
U3_A(x1, x2, x3) = U3_A(x3)
L_IN_A(x1) = L_IN_A
We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting [30] we can delete all non-usable rules from R.
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PrologToPiTRSProof
Pi DP problem:
The TRS P consists of the following rules:
U3_A(H, T, r_out_a(H)) → L_IN_A(T)
L_IN_A(.(H, T)) → U3_A(H, T, r_in_a(H))
The TRS R consists of the following rules:
r_in_a(1) → r_out_a(1)
The argument filtering Pi contains the following mapping:
r_in_a(x1) = r_in_a
r_out_a(x1) = r_out_a(x1)
.(x1, x2) = .(x1, x2)
U3_A(x1, x2, x3) = U3_A(x3)
L_IN_A(x1) = L_IN_A
We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem [30] into ordinary QDP problem [15] by application of Pi.
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Rewriting
↳ PrologToPiTRSProof
Q DP problem:
The TRS P consists of the following rules:
L_IN_A → U3_A(r_in_a)
U3_A(r_out_a(H)) → L_IN_A
The TRS R consists of the following rules:
r_in_a → r_out_a(1)
The set Q consists of the following terms:
r_in_a
We have to consider all (P,Q,R)-chains.
By rewriting [15] the rule L_IN_A → U3_A(r_in_a) at position [0] we obtained the following new rules:
L_IN_A → U3_A(r_out_a(1))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ PrologToPiTRSProof
Q DP problem:
The TRS P consists of the following rules:
L_IN_A → U3_A(r_out_a(1))
U3_A(r_out_a(H)) → L_IN_A
The TRS R consists of the following rules:
r_in_a → r_out_a(1)
The set Q consists of the following terms:
r_in_a
We have to consider all (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ PrologToPiTRSProof
Q DP problem:
The TRS P consists of the following rules:
L_IN_A → U3_A(r_out_a(1))
U3_A(r_out_a(H)) → L_IN_A
R is empty.
The set Q consists of the following terms:
r_in_a
We have to consider all (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.
r_in_a
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Instantiation
↳ PrologToPiTRSProof
Q DP problem:
The TRS P consists of the following rules:
L_IN_A → U3_A(r_out_a(1))
U3_A(r_out_a(H)) → L_IN_A
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
By instantiating [15] the rule U3_A(r_out_a(H)) → L_IN_A we obtained the following new rules:
U3_A(r_out_a(1)) → L_IN_A
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Instantiation
↳ QDP
↳ NonTerminationProof
↳ PrologToPiTRSProof
Q DP problem:
The TRS P consists of the following rules:
L_IN_A → U3_A(r_out_a(1))
U3_A(r_out_a(1)) → L_IN_A
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
We used the non-termination processor [17] to show that the DP problem is infinite.
Found a loop by narrowing to the left:
The TRS P consists of the following rules:
L_IN_A → U3_A(r_out_a(1))
U3_A(r_out_a(1)) → L_IN_A
The TRS R consists of the following rules:none
s = U3_A(r_out_a(1)) evaluates to t =U3_A(r_out_a(1))
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Semiunifier: [ ]
- Matcher: [ ]
Rewriting sequence
U3_A(r_out_a(1)) → L_IN_A
with rule U3_A(r_out_a(1)) → L_IN_A at position [] and matcher [ ]
L_IN_A → U3_A(r_out_a(1))
with rule L_IN_A → U3_A(r_out_a(1))
Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence
All these steps are and every following step will be a correct step w.r.t to Q.
We use the technique of [30]. With regard to the inferred argument filtering the predicates were used in the following modes:
p_in: (f)
l_in: (f)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
p_in_a(X) → U1_a(X, l_in_a(X))
l_in_a([]) → l_out_a([])
l_in_a(.(H, T)) → U3_a(H, T, r_in_a(H))
r_in_a(1) → r_out_a(1)
U3_a(H, T, r_out_a(H)) → U4_a(H, T, l_in_a(T))
U4_a(H, T, l_out_a(T)) → l_out_a(.(H, T))
U1_a(X, l_out_a(X)) → U2_a(X, q_in_g(X))
q_in_g(.(A, [])) → q_out_g(.(A, []))
U2_a(X, q_out_g(X)) → p_out_a(X)
The argument filtering Pi contains the following mapping:
p_in_a(x1) = p_in_a
U1_a(x1, x2) = U1_a(x2)
l_in_a(x1) = l_in_a
l_out_a(x1) = l_out_a(x1)
U3_a(x1, x2, x3) = U3_a(x3)
r_in_a(x1) = r_in_a
r_out_a(x1) = r_out_a(x1)
U4_a(x1, x2, x3) = U4_a(x1, x3)
U2_a(x1, x2) = U2_a(x1, x2)
q_in_g(x1) = q_in_g(x1)
.(x1, x2) = .(x1, x2)
[] = []
q_out_g(x1) = q_out_g(x1)
p_out_a(x1) = p_out_a(x1)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
Pi-finite rewrite system:
The TRS R consists of the following rules:
p_in_a(X) → U1_a(X, l_in_a(X))
l_in_a([]) → l_out_a([])
l_in_a(.(H, T)) → U3_a(H, T, r_in_a(H))
r_in_a(1) → r_out_a(1)
U3_a(H, T, r_out_a(H)) → U4_a(H, T, l_in_a(T))
U4_a(H, T, l_out_a(T)) → l_out_a(.(H, T))
U1_a(X, l_out_a(X)) → U2_a(X, q_in_g(X))
q_in_g(.(A, [])) → q_out_g(.(A, []))
U2_a(X, q_out_g(X)) → p_out_a(X)
The argument filtering Pi contains the following mapping:
p_in_a(x1) = p_in_a
U1_a(x1, x2) = U1_a(x2)
l_in_a(x1) = l_in_a
l_out_a(x1) = l_out_a(x1)
U3_a(x1, x2, x3) = U3_a(x3)
r_in_a(x1) = r_in_a
r_out_a(x1) = r_out_a(x1)
U4_a(x1, x2, x3) = U4_a(x1, x3)
U2_a(x1, x2) = U2_a(x1, x2)
q_in_g(x1) = q_in_g(x1)
.(x1, x2) = .(x1, x2)
[] = []
q_out_g(x1) = q_out_g(x1)
p_out_a(x1) = p_out_a(x1)
Using Dependency Pairs [1,30] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
P_IN_A(X) → U1_A(X, l_in_a(X))
P_IN_A(X) → L_IN_A(X)
L_IN_A(.(H, T)) → U3_A(H, T, r_in_a(H))
L_IN_A(.(H, T)) → R_IN_A(H)
U3_A(H, T, r_out_a(H)) → U4_A(H, T, l_in_a(T))
U3_A(H, T, r_out_a(H)) → L_IN_A(T)
U1_A(X, l_out_a(X)) → U2_A(X, q_in_g(X))
U1_A(X, l_out_a(X)) → Q_IN_G(X)
The TRS R consists of the following rules:
p_in_a(X) → U1_a(X, l_in_a(X))
l_in_a([]) → l_out_a([])
l_in_a(.(H, T)) → U3_a(H, T, r_in_a(H))
r_in_a(1) → r_out_a(1)
U3_a(H, T, r_out_a(H)) → U4_a(H, T, l_in_a(T))
U4_a(H, T, l_out_a(T)) → l_out_a(.(H, T))
U1_a(X, l_out_a(X)) → U2_a(X, q_in_g(X))
q_in_g(.(A, [])) → q_out_g(.(A, []))
U2_a(X, q_out_g(X)) → p_out_a(X)
The argument filtering Pi contains the following mapping:
p_in_a(x1) = p_in_a
U1_a(x1, x2) = U1_a(x2)
l_in_a(x1) = l_in_a
l_out_a(x1) = l_out_a(x1)
U3_a(x1, x2, x3) = U3_a(x3)
r_in_a(x1) = r_in_a
r_out_a(x1) = r_out_a(x1)
U4_a(x1, x2, x3) = U4_a(x1, x3)
U2_a(x1, x2) = U2_a(x1, x2)
q_in_g(x1) = q_in_g(x1)
.(x1, x2) = .(x1, x2)
[] = []
q_out_g(x1) = q_out_g(x1)
p_out_a(x1) = p_out_a(x1)
R_IN_A(x1) = R_IN_A
U3_A(x1, x2, x3) = U3_A(x3)
U1_A(x1, x2) = U1_A(x2)
U4_A(x1, x2, x3) = U4_A(x1, x3)
U2_A(x1, x2) = U2_A(x1, x2)
L_IN_A(x1) = L_IN_A
P_IN_A(x1) = P_IN_A
Q_IN_G(x1) = Q_IN_G(x1)
We have to consider all (P,R,Pi)-chains
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
Pi DP problem:
The TRS P consists of the following rules:
P_IN_A(X) → U1_A(X, l_in_a(X))
P_IN_A(X) → L_IN_A(X)
L_IN_A(.(H, T)) → U3_A(H, T, r_in_a(H))
L_IN_A(.(H, T)) → R_IN_A(H)
U3_A(H, T, r_out_a(H)) → U4_A(H, T, l_in_a(T))
U3_A(H, T, r_out_a(H)) → L_IN_A(T)
U1_A(X, l_out_a(X)) → U2_A(X, q_in_g(X))
U1_A(X, l_out_a(X)) → Q_IN_G(X)
The TRS R consists of the following rules:
p_in_a(X) → U1_a(X, l_in_a(X))
l_in_a([]) → l_out_a([])
l_in_a(.(H, T)) → U3_a(H, T, r_in_a(H))
r_in_a(1) → r_out_a(1)
U3_a(H, T, r_out_a(H)) → U4_a(H, T, l_in_a(T))
U4_a(H, T, l_out_a(T)) → l_out_a(.(H, T))
U1_a(X, l_out_a(X)) → U2_a(X, q_in_g(X))
q_in_g(.(A, [])) → q_out_g(.(A, []))
U2_a(X, q_out_g(X)) → p_out_a(X)
The argument filtering Pi contains the following mapping:
p_in_a(x1) = p_in_a
U1_a(x1, x2) = U1_a(x2)
l_in_a(x1) = l_in_a
l_out_a(x1) = l_out_a(x1)
U3_a(x1, x2, x3) = U3_a(x3)
r_in_a(x1) = r_in_a
r_out_a(x1) = r_out_a(x1)
U4_a(x1, x2, x3) = U4_a(x1, x3)
U2_a(x1, x2) = U2_a(x1, x2)
q_in_g(x1) = q_in_g(x1)
.(x1, x2) = .(x1, x2)
[] = []
q_out_g(x1) = q_out_g(x1)
p_out_a(x1) = p_out_a(x1)
R_IN_A(x1) = R_IN_A
U3_A(x1, x2, x3) = U3_A(x3)
U1_A(x1, x2) = U1_A(x2)
U4_A(x1, x2, x3) = U4_A(x1, x3)
U2_A(x1, x2) = U2_A(x1, x2)
L_IN_A(x1) = L_IN_A
P_IN_A(x1) = P_IN_A
Q_IN_G(x1) = Q_IN_G(x1)
We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph [30] contains 1 SCC with 6 less nodes.
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ UsableRulesProof
Pi DP problem:
The TRS P consists of the following rules:
U3_A(H, T, r_out_a(H)) → L_IN_A(T)
L_IN_A(.(H, T)) → U3_A(H, T, r_in_a(H))
The TRS R consists of the following rules:
p_in_a(X) → U1_a(X, l_in_a(X))
l_in_a([]) → l_out_a([])
l_in_a(.(H, T)) → U3_a(H, T, r_in_a(H))
r_in_a(1) → r_out_a(1)
U3_a(H, T, r_out_a(H)) → U4_a(H, T, l_in_a(T))
U4_a(H, T, l_out_a(T)) → l_out_a(.(H, T))
U1_a(X, l_out_a(X)) → U2_a(X, q_in_g(X))
q_in_g(.(A, [])) → q_out_g(.(A, []))
U2_a(X, q_out_g(X)) → p_out_a(X)
The argument filtering Pi contains the following mapping:
p_in_a(x1) = p_in_a
U1_a(x1, x2) = U1_a(x2)
l_in_a(x1) = l_in_a
l_out_a(x1) = l_out_a(x1)
U3_a(x1, x2, x3) = U3_a(x3)
r_in_a(x1) = r_in_a
r_out_a(x1) = r_out_a(x1)
U4_a(x1, x2, x3) = U4_a(x1, x3)
U2_a(x1, x2) = U2_a(x1, x2)
q_in_g(x1) = q_in_g(x1)
.(x1, x2) = .(x1, x2)
[] = []
q_out_g(x1) = q_out_g(x1)
p_out_a(x1) = p_out_a(x1)
U3_A(x1, x2, x3) = U3_A(x3)
L_IN_A(x1) = L_IN_A
We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting [30] we can delete all non-usable rules from R.
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
Pi DP problem:
The TRS P consists of the following rules:
U3_A(H, T, r_out_a(H)) → L_IN_A(T)
L_IN_A(.(H, T)) → U3_A(H, T, r_in_a(H))
The TRS R consists of the following rules:
r_in_a(1) → r_out_a(1)
The argument filtering Pi contains the following mapping:
r_in_a(x1) = r_in_a
r_out_a(x1) = r_out_a(x1)
.(x1, x2) = .(x1, x2)
U3_A(x1, x2, x3) = U3_A(x3)
L_IN_A(x1) = L_IN_A
We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem [30] into ordinary QDP problem [15] by application of Pi.
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Rewriting
Q DP problem:
The TRS P consists of the following rules:
L_IN_A → U3_A(r_in_a)
U3_A(r_out_a(H)) → L_IN_A
The TRS R consists of the following rules:
r_in_a → r_out_a(1)
The set Q consists of the following terms:
r_in_a
We have to consider all (P,Q,R)-chains.
By rewriting [15] the rule L_IN_A → U3_A(r_in_a) at position [0] we obtained the following new rules:
L_IN_A → U3_A(r_out_a(1))
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
Q DP problem:
The TRS P consists of the following rules:
L_IN_A → U3_A(r_out_a(1))
U3_A(r_out_a(H)) → L_IN_A
The TRS R consists of the following rules:
r_in_a → r_out_a(1)
The set Q consists of the following terms:
r_in_a
We have to consider all (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
Q DP problem:
The TRS P consists of the following rules:
L_IN_A → U3_A(r_out_a(1))
U3_A(r_out_a(H)) → L_IN_A
R is empty.
The set Q consists of the following terms:
r_in_a
We have to consider all (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.
r_in_a
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Instantiation
Q DP problem:
The TRS P consists of the following rules:
L_IN_A → U3_A(r_out_a(1))
U3_A(r_out_a(H)) → L_IN_A
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
By instantiating [15] the rule U3_A(r_out_a(H)) → L_IN_A we obtained the following new rules:
U3_A(r_out_a(1)) → L_IN_A
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Instantiation
↳ QDP
↳ NonTerminationProof
Q DP problem:
The TRS P consists of the following rules:
L_IN_A → U3_A(r_out_a(1))
U3_A(r_out_a(1)) → L_IN_A
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
We used the non-termination processor [17] to show that the DP problem is infinite.
Found a loop by narrowing to the left:
The TRS P consists of the following rules:
L_IN_A → U3_A(r_out_a(1))
U3_A(r_out_a(1)) → L_IN_A
The TRS R consists of the following rules:none
s = U3_A(r_out_a(1)) evaluates to t =U3_A(r_out_a(1))
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Semiunifier: [ ]
- Matcher: [ ]
Rewriting sequence
U3_A(r_out_a(1)) → L_IN_A
with rule U3_A(r_out_a(1)) → L_IN_A at position [] and matcher [ ]
L_IN_A → U3_A(r_out_a(1))
with rule L_IN_A → U3_A(r_out_a(1))
Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence
All these steps are and every following step will be a correct step w.r.t to Q.